Tropospheric water vapour above Switzerland over the last 12 years
نویسندگان
چکیده
Integrated Water vapour (IWV) has been measured since 1994 by the TROWARA microwave radiometer in Bern, Switzerland. Homogenization techniques were used to identify and correct step changes in IWV related to instrument problems. IWV from radiosonde, GPS and sun photometer (SPM) was used in the homogenisation process as well as partial IWV columns between valley and mountain weather stations. The average IWV of the homogenised TROWARA time series was 14.4 mm over the 1996–2007 period, with maximum and minimum monthly average values of 22.4 mm and 8 mm occurring in August and January, respectively. A weak diurnal cycle in TROWARA IWV was detected with an amplitude of 0.32 mm, a maximum at 21:00 UT and a minimum at 11:00 UT. For 1996– 2007, TROWARA trends were compared with those calculated from the Payerne radiosonde and the closest ECMWF grid point to Bern. Using least squares analysis, the IWV time series of radiosondes at Payerne, ECMWF, and TROWARA showed consistent positive trends from 1996 to 2007. The radiosondes measured an IWV trend of 0.45±0.29%/y, the TROWARA radiometer observed a trend of 0.39±0.44%/y, and ECMWF operational analysis gave a trend of 0.25±0.34%/y. Since IWV has a strong and variable annual cycle, a seasonal trend analysis (Mann-Kendall analysis) was also performed. The seasonal trends are stronger by a factor 10 or so compared to the full year trends above. The positive IWV trends of the summer months are partly compensated by the negative trends of the winter months. The strong seasonal trends of IWV on regional scale underline the necessity of long-term monitoring of IWV for detection,understanding, and forecast of climate change effects in the Alpine region. Correspondence to: C. Mätzler ([email protected])
منابع مشابه
The STARTWAVE atmospheric water database
The STARTWAVE (STudies in Atmospheric Radiative Transfer and Water Vapour Effects) project aims to investigate the role which water vapour plays in the climate system, and in particular its interaction with radiation. Within this framework, an ongoing water vapour database project was set up which comprises integrated water vapour (IWV) measurements made over the last ten years by ground-based ...
متن کاملThe water vapour distribution in the Arctic lowermost stratosphere during the LAUTLOS campaign and related transport processes
Balloon-borne water vapour measurements during January and February 2004, which were obtained as part of the LAUTLOS campaign at Sodankylä, Finland, 67 N, were used to analyse the water vapour distribution in the wintertime Arctic lowermost stratosphere. A 2.5 km thick layer (or 30 K in the potential temperature scale) above the tropopause is characterized by a significant water vapour variabil...
متن کاملCloud Fraction of Liquid Water Clouds above Switzerland over the Last 12 Years
Cloud fraction (CF) plays a crucial role in the Earth’s radiative energy budget and thus in the climate. Reliable long-term measurements of CF are rare. The ground-based TROpospheric WAter RAdiometer (TROWARA) at Bern, Switzerland continuously measures integrated liquid water and infrared brightness temperature with a time resolution of 6–11 s since 2004. The view direction of TROWARA is consta...
متن کاملDetermination of Moisture Changes Prior to the Onset of South-West Monsoon Over Kerala Using NOAA/TOVS Satellite Data
The temperature and moisture data from TIROS operational vertical sounder (TOVS) are examined to obtain humidity parameters like, mid and upper tropospheric water vapour, and scale height of water vapour. Their usefulness in characterizing the onset of south-west (SW) monsoon over India is studied. The NOAA satellite data (finished product) with a resolution of 2.5 ~ lat/lon are used to obtain ...
متن کاملDiurnal Cycle in Atmospheric Water over Switzerland
The TROpospheric WAter RAdiometer (TROWARA) is a ground-based microwave radiometer with an additional infrared channel observing atmospheric water parameters in Bern, Switzerland. TROWARA measures with nearly all-weather capability during dayand nighttime with a high temporal resolution (about 10 s). Using the almost complete data set from 2004 to 2016, we derive and discuss the diurnal cycles ...
متن کامل